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Abstract—Ergonomics and human comfort are essential con-
cerns in physical human-robot interaction applications. Defin-
ing an accurate and easy-to-use ergonomic assessment model
stands as an important step in providing feedback for postural
correction to improve operator health and comfort. In order
to enable efficient computation, previously proposed automated
ergonomic assessment and correction tools make approximations
or simplifications to gold-standard assessment tools used by
ergonomists in practice. In order to retain assessment quality,
while improving computational considerations, we introduce
DULA, a differentiable and continuous ergonomics model learned
to replicate the popular and scientifically validated RULA as-
sessment. We show that DULA provides assessment comparable
to RULA while providing computational benefits. We highlight
DULA’s strength in a demonstration of gradient-based postural
optimization for a simulated teleoperation task.

I. INTRODUCTION

Autonomous Postural Optimization has received substantial
attention in research with the new technologies around humans
such as collaborative robots [18], smart personal trainers [4],
and VR systems [8]. In these systems, the interacting agent
should consider human comfort and ergonomics in its be-
haviour and motion planning [24]. For example, in a phys-
ical human-robot interaction (pHRI) application such as co-
manipulation, one of the objectives in motion planning of the
collaborative robot must be satisfying ergonomic safety for the
human.

Developing a model of human comfort lies at the heart of
effective postural optimization. pHRI researchers have pro-
posed several computational models for assessing ergonomics
and human comfort in terms of peripersonal space [3], mus-
cle fatigue [17], and joint overloading [13]. In contrast er-
gonomists have provided simpler models which are easier
for human experts to calculate by hand and as such are
more common in practice. These models include the NASA
TLX [6], RULA [15], REBA [7], strain index [22] and ACGIH
TLV [11]. Importantly these models are supported by extensive
human subject studies that validate their effectiveness on
reducing ergonomic risk factors [9, 12].

Among all risk assessment tools, RULA and REBA depend
most on human posture and provide quantitative scores, mak-
ing them good choices for postural optimization applications.
However, the discrete scores and the presence of plateaus in
RULA and REBA [1] create challenges when using them in
gradient-based postural optimization. Based on our experience,
using the risk assessment models directly in gradient-free
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Fig. 1: The structure of the DULA neural network.

optimization is time-expensive and the plateaus often prevent
progress toward the global optimal solution in postural opti-
mization. Thus, researchers in pHRI often use approximations
of ergonomic assessment models in gradient-based postural
optimizations; quadratic approximations [20, 1, 2] being the
standard approach in the literature. However, these approxima-
tions deviate far from the scientifically validated assessments,
causing doubt that they can reliably provide the same level of
ergonomic benefit.

To overcome these issues, we introduce the Differentiable
Upper Limb Assessment (DULA), a differentiable and con-
tinuous risk assessment model that is learned using a neural
network to replicate the popular RULA survey tool (Fig. 1).
Instead of discrete scores from 1 to 7, DULA reports the risk
score as a continuous real number from 1 to 7. Furthermore,
it provides the gradient of the risk with respect to each joint
enabling efficient use in optimization. We compare the predic-
tion of risk scores of DULA with RULA and provide an open-
source package demonstrating how to use DULA in a gradient-
based postural optimization in a simulated teleoperation.

II. RELATED WORK

Although human postural optimization has received signifi-
cant attention in pHRI, only a few studies [20, 19] investigate
postural improvement in teleoperation. Table I summarizes the
relevant literature for postural optimization in both areas.

Researchers have examined ergonomics and postural op-
timization in three different types of physical human-robot
interaction scenarios: (1) Assistive Holding (e.g. [14, 21, 3]),
(2) object handover (e.g. [1, 2, 17]), and (3) Co-Manipulation
(e.g. [23, 18, 17, 13]). In the first two tasks the postural
optimization provides optimized posture for the human and
joint configurations for the robot while maintaining contact
with the object at the interaction interface. For the case of co-



Ergonomics Model Analytical Models Learned Models Risk Assessment Tools
Approximation Method Quadratic No Approximation

O
pt

im
iz

at
io

n

gradient-based

■ Peternel 2018 [18] ◇ Rahal 2020 [20]
■ ■ Peternel 2017 [17] ■ Busch 2017 [1]
□ Chen 2018 [3] ■ Busch 2018 [2]
◆ Peternel 2020 [19]
■ Kim 2017 [13]

gradient-free □ Marin 2018 [14] ■ van der Spaa 2020 [23]
Non-optimization □ Shafti et al. [21]

Legend □ physical HRI: Assistive Holding, ■ physical HRI: Handover, ■ physical HRI: Co-Manipulation
◆ Teleop: Goal-Constrained with Repositioning Postural Correction, ◇ Teleop: Goal-Constrained with Online Postural Correction

TABLE I: State of the art of postural optimization in pHRI and teleoperation.

manipulation, the postural optimization outputs a trajectory of
optimal postures for the human and an optimal joint-space
trajectory for the robot to perform the co-manipulation task.

Ergonomic assessment models provide the primary cost
in postural optimization objectives. pHRI researchers have
proposed many computational models to assess ergonomics
and human comfort of users including peripersonal space [3],
muscle fatigue [17], and joint overloading [13]. To make
the optimization simpler, Marin et al. suggested the idea of
a contextual ergonomics model which is a set of Gaussian
process models including joint angles, moments, reaction,
load and muscle activation, trained with the musculoskeletal
simulation task contexts [14]. Using Gaussian process models
enables search in a 2D latent space while their cost function
is defined in the high-dimensional musculoskeletal space.

Some literature use approximations of the ergonomics risk
assessment tools. Busch et al. proposed a differentiable surro-
gate of the REBA score by fitting a weighted combination of
quadratic functions plus a constant for the task payload [2].
Rahal et al. suggested a quadratic approximation for RULA
which is the summation of the quadratic norm of the deviation
from the human neutral posture for shoulder, elbow and wrist
joints angles [20]. Their approximation conceptually agrees
with the qualitative idea behind RULA in which the risk
score goes higher when the human deviates more from the
neutral posture. Van der Spaa et al. provide the only study of
directly using risk assessment tools in derivative-free postural
optimization [23]. They add the REBA score to the transition
cost function in an A* optimization for task and motion
planning of a robot in a co-manipulation task.

III. DIFFERENTIABLE HUMAN ERGONOMICS MODEL

To build a differentiable RULA, we developed a dataset of
7.5 million upper body postures of a human model consisting
of 3 joints in the torso and 7 joints in the arm. We additionally
define task parameters based on the RULA worksheet—the
frequency of the arm and body motions; type and maximum
load on the arm and body; neck angle; and whether any legs,
feet, or arms are supported. As the human range of motion
is pose dependant, to ensure the validity of the postures, we
used the learned pose-dependant model of posture validity
provided by [10]. We developed a script for automatic RULA
assessment based on the posture and tasks parameters and
verified it with several ergonomists. We used this script to
label the posture dataset. Since postures with labels 1, 2, 6,
and 7 are not frequent in the full range of human motion, we
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Fig. 2: Confusion matrix (accuracy %) for DULA vs RULA.

balanced the dataset by forcing the data generation scripts to
generate enough data points with those labels. We split the
dataset into 80% training and 20% testing sets.

Moreover, to learn a continuous and differentiable function
for RULA, we designed a fully-connected regression-based
neural network. While RULA provides discrete integer scores
from 1 to 7, we choose to predict continuous labels. If we
had instead performed multi-class classification based on the
discrete labels the resulting model would be less useful in
optimization as there is no natural choice of smooth objective
to minimize or constrain ergonomic cost. This would negate
our desire for a computationally useful model. Hence, we
perform regression to the multi-class labels.

The structure of the neural network is shown in Fig. 1. It
includes 4 hidden layers with ReLU activation function. We
found that a network with 124 units for the first three layers
and 7 units for the last hidden layer worked best. We train the
network using the standard mean squared error loss function
for 2000 epochs using a learning rate of 0.001. We used 5-
fold cross-validation to find the optimal network parameters.
This results in a model with 99.73% accuracy. We round
our continuous output to the nearest integer when reporting
accuracy. Figure 2 shows the confusion matrix for the learned
DULA model. The lowest diagonal element is 99.38% which



Fig. 3: Postural optimization categories in teleoperation.

Fig. 4: Teleoperation simulation environment in ROS. The green
skeleton visualizes the suggested optimal posture and the white
skeleton shows the simulated human.

shows the high accuracy of the learned model across all ranges.

IV. POSTURAL OPTIMIZATION USING DULA

We use the learned DULA model in a gradient-based postu-
ral optimization for a simple teleoperation scenario in which
a human interacts with a leader robot to remotely control a
follower robot. As the human performs the task, the intelligent
teleoperation system estimates the human posture using e.g.
marker-based or markerless posture estimation, or directly
from the leader robot using the method proposed in [25]. Then,
it performs risk assessment to obtain the ergonomics risk score
using the standard RULA model. The postural optimization
algorithm uses DULA to find the optimal posture that results
in the same hand pose at the interaction point between the
human and the leader robot, while having the minimum risk
of injuries and then provides the user with the online optimal
postural correction to move towards while completing the task.

The human operator can correct the posture while perform-
ing the task without pausing. This approach is beneficial for
goal-constrained teleoperation tasks such as pick-and-place in
which the goal position for placing the object is defined, but,
the path toward the goal point is not constrained.

We define online postural optimization for teleoperation as:

q
∗
t = argmin

qt

DULA(qt) (1)

s.t. ∣∣xt − Φ(qt)∣∣2Σ < ε

qt ∈ Range of Motion

where q
∗
t and qt are optimal posture and posture at time t,

respectively, xt is the observed pose of the hand measured by
the leader robot, Φ is the forward kinematics of the human, and
Σ is the weight vector for position and orientation elements.

It is important to note that the optimal posture q
∗
t from

Eq. (1) for each time step is then suggested to the human to
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Fig. 5: Overview of teleoperation simulation.

move towards. The human can refuse or accept, and try to
apply it as much as possible while completing the task.

In addition to goal-constrained teleoperation, we also de-
fined and formulated the use of DULA in postural optimization
for path-constrained teleoperation (e.g. turning a valve where
the path to follow is constrained based on the diameter of
the valve) and trajectory-constrained teleoperation (e.g. arc
welding where the operator should follow a velocity profile
in addition to the welding path). Figure 3 summarizes our
formulation for different types of teleoperation tasks and their
corresponding postural optimization approaches. We focus on
online postural correction in this paper; analyzing the other
problem formulations is ongoing work.

We used a sequential quadratic programming (SQP) [16]
solver from SciPy, bounded on the range of motion, to solve
the nonlinear optimization in Eq. (1), and calculated DULA
gradients using automatic differentiation in PyTorch.

V. SIMULATED TELEOPERATION ENVIRONMENT

We developed an open-source simulator for postural correc-
tion in teleoperation using ROS. It includes a human seated on
a stool, and two 7-DOF KUKA LWR-4 robots as leader and
follower robots as shown in Fig. 4. We model our simulated
human operator to behave like a human in two ways: (1)
physically controlling the teleoperation task and (2) accepting
or rejecting the recommended postural corrections.

We model this as an optimal motion planning framework
with re-planning that finds a human joint trajectory that
controls the follower robot for the desired task while moving
toward the optimal ergonomic posture:

τ
h
t→H

∗
= argmin

τh
t→H

H

∑
t=t

∣∣xfg − x
f
t ∣∣

2
Σ + α∣∣qht − q

h∗

t ∣∣
2
2 (2)

where τft→H is the trajectory of human posture from time t to
the time of the horizon H , xfg is the goal pose of the follower
robot, and f

xt is the pose of the follower robot at time t.



A. Gradient-free postural optimization

B. Gradient-based postural optimization

Fig. 6: Comparison of gradient-free and gradient-based postural
correction on a teleoperation task. Lower scores are better.

qt and q
∗
t are the current posture and optimal posture of the

human from the postural optimization at time t, respectively.
Here, 0 ≤ α ≤ 1 is a scalar number that models the postural
correction acceptance and the effort of the human operator
towards applying the postural correction. Details of the motion
planning for the human and the robots are presented in Fig. 5.
We note that this model is likely a simplification of true human
teleoperation behavior. We do not advocate for its use over
human subject studies. Instead, we propose it as a useful tool
for systematically exploring new algorithms in human safety
assessment and improvement.

As a comparison to DULA, we directly use the standard
RULA in a gradient-free postural optimization using the cross-
entropy method [5]. Figure 6(A) shows the postural correction
using this approach in a simple teleoperation task. It presents
the RULA scores for calculated optimal posture (green),
human posture without postural correction (orange), and the
human posture after applying the postural correction (blue)
according to the human control and acceptance model during
the task. The plot shows that the risk is reduced after the simu-
lated human applies the suggested optimal postural correction.
Also the task completion time increases without a significant
decrease in risk.

Figure 6(B) shows the postural correction for the same task
using gradient-based optimization with DULA. We can see
that gradient-based approach provides a smoother motion with
respect to the RULA risk score and avoids going through
postures with risk higher than 4. It also results in shorter task

Fig. 7: comparing the optimal posture and corrected posture be-
tween gradient-free optimization using RULA and gradient-based
optimization using DULA. Lower scores are better. An iteration of
the gradient-free method takes 2.7 minutes, where the gradient-based
method takes only tenths of a second.

completion time than the gradient-free approach.
Figure 7 provides more information on comparing gradient-

free and gradient-based postural optimization. It shows that
the median risk scores of target optimal postures from the
gradient-free approach is lower. However, the postures of the
simulated human are more comfortable after applying the op-
timal posture calculated from the gradient-based optimization.
We believe it is due to the smoother optimal postures that
has been suggested to the simulated human from the gradient-
based method. Moreover, the gradient-based approach is much
faster. Each iteration of the gradient-free approach using 10000
samples takes 2.7 minutes to solve, while the gradient-based
approach takes only tenths of a second.

VI. CONCLUSION AND FUTURE DIRECTIONS

We introduced DULA, a differentiable and continuous er-
gonomics model to assess human upper body posture. DULA
learned to replicate the non-differentiable RULA using a neu-
ral network. The proposed model is 99.73% accurate and com-
putationally designed for effecient use in postural optimization
for pHRI and other related applications. We also introduced
a framework for postural optimization in teleportation using
DULA and presented a demo task. The results reveal postural
optimization using DULA lowers the risk score for goal-
constrained teleop. The trained DULA model, data, algorithm,
and demo are available as an open-source package1.

There are several directions for future work. As a fist step,
we plan to follow the same procedure for REBA a whole
body assessment tool. Additionally, we intend to conduct a
human subject study to evaluate our postural optimization and
correction approach. We wish to compare different means of
feedback for the posture correction to the human operator
including visual, auditory, and haptic feedback.
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