Improvement of Human Safety in Fault-Tolerant Human and Robot Collaboration Using Convex Optimization and Receding Horizon Control

Mojtaba Yazdani, Roya S. Novin, Andrew S. Merryweather

Laboratory of Ergonomics and Safety, Mechanical Eng. Department, University of Utah

Research reported in this publication was supported by the National Institute of Occupational Safety and Health of the National Institutes of Health under award number T420H008414-10. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
Robotics in industries: 2016

- 34,606 robots ($1.9 billion) were ordered in North America: growth of 10%
 - The automotive industry: 25% growth
 - Assembly applications: 61% growth
 - Spot welding: 24% growth
 - The food and consumer goods industry: 32% growth

- Robotic Industries Association
Robotics in industries: 2025

- Replacing 16% of jobs in US
- Creating nearly 9,000,000 (9%) new jobs in new fields like robot monitoring, data science and content curation
- Net value: Impacting 7% of jobs

- Forrester Research
Robotics in industries

What if a task needs the intelligence and flexibility of human and accuracy and repeatability of a robot?

Collaborative Robots
Collaborative Robots

- Designed to be safe around people
- Easy to program, even via a smartphone or tablet
- Easy to be moved from task to task as needed
- Intended to assist, not replace human workers
- Lightweight
- Simpler than more traditional robots
- Cheaper to buy, operate and maintain
Safety

• Accidents happen when the human worker is inside the work cell
 o Human interferes with robot normal motion
 o A failure in robot causes sudden and harmful motion

The Telegraph, July 2015:
A robot has killed a contractor at one of Volkswagen's production plants in Germany where a 22-year-old man was setting up the stationary robot.

The Times of India, August 2015:
Sharp welding sticks jutting out of the robotic arm of a machine pierced a worker killing him at a factory. The worker had moved too close to the robot while adjusting a metal sheet that had come unstuck.
Safety

• Robophobia: An anxiety disorder in which sufferers have an “irrational fear of robots, drones, robot-like mechanics, or artificial intelligence.”

 Psychologist Dr. Graham Davey, 1997

• Symptoms: panic attacks, sweating, anxiousness, discomfort, kicked off by either the sight of a robot, being near a robot, or even just talking about robots.

In 1997, 20% of the world’s population were suffering from robophobia.
Safety

• Solutions:
 o Physical safety barriers
 o Limits on robot motion
 o Limits on robot forces
 o Proper installation of robot
 o Use force/torque controls

Productivity?
Safety vs Productivity

Safety first, but also be more productive

Collision-free motion planning algorithm

Recovery from failure
Problem & Solution

- Optimal path planning for end-effector and collision avoidance
Problem & Solution

- Optimal path planning for end-effector and collision avoidance

Problem & Solution

- Optimal fault-tolerant trajectory planning for joints and collision avoidance
Problem & Solution

Develop new algorithm that:
- Optimally plans motion of robot
- Avoids collision with human
- Completes the task safely after failure
- Minimizes velocity jumps after a failure in actuators

Motion capture system

Part to be assembled

Operator's hand tracked by the system

Robot's end-effector follows the operator's hand

Monitored distance

Following

Parts of the scene considered as background

Operator

NIOSH Expanding Research Partnerships: State Of The Science Conference, June 2017, Aurora, CO
Methods And Approaches

- Receding Horizon Control
 - Predicts and plans for next K steps in each iteration
 - Executes only the first step in each iteration
 - Re-plans after each step

✓ Make a smooth trajectory
✓ Decrease computational time

Changbin Hu 2015
Methods And Approaches

- Convex Optimization

\[\begin{align*}
\min & \quad f_0(x) \\
\text{s.t.} & \quad f_i(x) < 0 \\
& \quad h_j(x) = 0
\end{align*} \]

- It is convex when:
 - The objective function is convex
 - The inequality constraint functions are convex
 - The equality constraint functions are affine

- Guarantees global optimality

- Used GUROBI optimization package (fastest solver available now)
Methods And Approaches

- Objective function:
 - Minimum path
 \[
 \min \sum_{i=1}^{h} \sum_{j=1}^{p} \left\| z_j(i + 1) - z_j(i) \right\|_2^2
 \]
 - Minimum joints velocity jumps
 \[
 \min \sum_{i=1}^{h} \left\| \dot{q}_j \right\|_2^2
 \]
 - Minimum end-effector tracking error
 \[
 \min \sum_{i=1}^{h} \left\| z_r(i) - z_{nl,m}(i) \right\|_2^2
 \]

\[
\min w_1 \sum_{i=1}^{h} \sum_{j=1}^{p} \left\| z_j(i + 1) - z_j(i) \right\|_2^2 + w_2 \sum_{i=1}^{h} \left\| z_r(i) - z_{nl,m}(i) \right\|_2^2 + w_3 \sum_{i=1}^{h} \left\| \dot{q}_j \right\|_2^2
\]
Methods And Approaches

- Constraints
 - Robot kinematics
 \[
 A_{cs,j}(i)(z_{j,m}(i) - z_{j-1,m}(i)) \leq b_{cs,j}(i)
 \]
 \[
 A_{is,j}(i)\left(z_{j,m}(i) - z_{j-1,m}(i)\right) \geq b_{is,j}(i) + (u_j(i) - 1)M
 \]
 \[
 \sum_{s=1}^{n_{is}} u_{j,s}(i) \geq 1
 \]
 - Obstacle avoidance
 \[
 A_{o}(i)z_{j,k}(i) \geq b_{o}(i) + (v(i) - 1)M
 \]
 \[
 \sum_{s=1}^{n_{is}} v_s(i) \geq 1
 \]
Methods And Approaches

- Constraints
 - Actuator failure modeling
 \[A_{cs,F}(i)(z_{j,m}(i) - z_{F-2,m}(i)) \leq b_{cs,F}(i) \]
 \[A_{is,F}(i)\left(z_{F,m}(i) - z_{F-2,m}(i)\right) \geq b_{is,F}(i) + (u_F(i) - 1)M \]
 \[\sum_{s=1}^{n_{is}} u_{F,s}(i) \geq 1 \]
 - Velocity bounds
 \[\left| \frac{z_{j,m}(i + 1) - z_{j,m}(i)}{\Delta t} \right| \leq v_{j,max} \]
Simulation and results

- Planar 4-DOF robot
- End-effector trajectory: U-shaped
- 3rd joint fails (locks) at $t=14$ sec
- Human as obstacle
Simulation and results

- Task completion and obstacle avoidance
 - 3rd joint locks at t=14 sec
Simulation and results

- Minimize velocity jumps

![Diagram showing simulation results with curves for different manipulator states and a failure point at 1st joint.](image-url)
Simulation and results

- Minimize velocity jumps
Simulation and results

- Minimize velocity jumps

![Graph showing angular velocity over time for different cases with 3rd joint highlighted]
Simulation and results

• Minimize velocity jumps

![Graph showing simulation results with arrows indicating failure and locked actuator](image-url)
Discussion

- Complete the task safely
- Optimize the joint trajectory
- Avoid having collision with human
- Minimize joints velocity jumps

Improve productivity
Avoid injuries
Improve safety
Conclusion and future work

- Developed an algorithm for improve safety in HRC in advanced manufacturing
- Using motion analysis and machine learning for human motion and intent prediction and perception
- Adding biomechanical constraints, human factors and safety parameters into optimization problem
- Design optimized task assignment between human and robot to improve safety and productivity
Thanks

Questions?