
Mobile Robot Visual Localization and 3D Map Generation 
(Computer Vision Project Final Report) 

 
 

Xiang He 
Mechanical  Engineering 

University of Utah 
hexiang422@gmail.com 

 

 Dejun Guo 
Mechanical  Engineering 

University of Utah 
dejunguo422@gmail.com 

 

Jacob Harris 
Mechanical  Engineering 

University of Utah 
jacob84401@gmail.com 

 
 Roya Sabbagh Novin 

Mechanical  Engineering 
University of Utah 

roya.sabbaghnovin@utah.edu 

Amir Yazdani 
Mechanical  Engineering 

University of Utah 
mojtaba.yazdani@utah.edu 

 
 

Abstract 
In this project, the visual localization is implemented        
on a mobile robot using Kinect. The method used for          
localization is RGB-D SLAM. In addition, a 3D map         
is generated based on all collected images. Results        
show that this method is accurate and comparable to         
LIDAR and robot odometry. 

1. Problem Statement 
Mobile robots are commonly used across research       
and industry. In this context, robot localization is        
often one of the major challenges in robot control. In          
an indoor environment with a flat floor plan,        
localization is identified as a problem of estimating        
the pose, i.e. position and orientation of a mobile         
robot, when the map of the environment, sensor        
readings, and executed actions of the robot are        
provided [1]. 
For purpose of this project, we will implement the         
Visual Odometry method on a Roomba iCreate 2,        
equipped with a Microsoft Kinect RGB-D sensor, for        
localization and map generation. We are going to        
evaluate our approach by comparing localization      
results with robot odometry results, LIDAR sensor       
localization, and GPS. 

2. Introduction and Motivation 

Many existing methods for robot localization are       
based on GPS, laser odometry, wheel odometry,       
sonar sensors or artificial landmarks [2, 3]. All of         
these methods have their strengths and weaknesses.       
For example, GPS is prone to signal loss, laser based          

systems are heavy and expensive, and wheel       
odometry is susceptible to slip and drift overtime [4]. 
Alternatively, monocular camera visual odometry can      
be used and has many positive aspects. The system is          
relatively inexpensive, extremely light, and cameras      
utilize our rich colored world. It has been        
demonstrated that Visual Odometry will oftentimes      
produce better results than Wheeled Odometry and       
can have as low as 0.1% tracking error [4]. To further           
reduce drift, a visual odometry system may be        
combined with GPS, laser, and IMU data [5, 6, 7]. A           
visual system can also create a map to be used in the            
future for navigation systems or further analysis. 
In this method, it is assumed that a monocular camera          
is rigidly fixed on a mobile robot. It is not necessary           
to know the environment. A video is filmed while the          
robot moves and point features are matched between        
pairs of frames and linked into image trajectories at         
video rate using the Harris Corners Technique. Then,        
the camera motion can be estimated robustly from the         
feature tracks using a geometric hypothesize-and-test      
architecture [8]. The key points and images can be         
stored as a map to be used by the robot to prevent            
drift over time [9].  
In this project, we will implement a Visual Odometry         
method on a Roomba iCreate 2 which is equipped         
with a Microsoft Kinect RGB-D sensor for       
localization and map generation. Although the mobile       
robot is moving on a 2D plane (ground), the         
localization and map generation algorithms are for       
3D environments, so the final results are in 3D. At          
the end, we will evaluate our approach by comparing         
resulted localization with results from robot      
odometry, LIDAR sensor localization, or GPS data.       
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Finally, it should be mentioned that we are going to          
make a ROS package which includes different nodes        
for various parts of the algorithm. 

3. Prior Art 
Many solutions have been proposed for the pose        
estimation of mobile robots employing Kalman      
filtering [10], particle filtering [11, 12], and Markov        
localization [13]. Ganganath and Leung in [14]       
proposed an accurate and low cost mobile robot        
localization method using odometry and a Kinect       
sensor. The odometry model they used is capable of         
tracking any arbitrary robot motion. They have fused        
odometry and the Kinect sensor measurements using       
the extended Kalman filter (EKF) and the particle        
filter (PF) to provide more accurate localization       
results. 
Vision-based localization and mapping algorithm     
using SIFT features is proposed in [2,15]. Being scale         
and orientation invariant, SIFT features are good       
natural visual landmarks for tracking over long       
periods of time from different views, to correct        
odometry locally. This algorithm has also been       
extended for global localization [16]. 
Compared to the visual odometry method where the        
map generated is a by-product, visual SLAM       
(simultaneous localization and mapping) generates a      
map to help localization. New features will be added         
into the map as new areas are explored. Andrew, et          
al. [17] first introduced the monocular visual slam        
algorithm where three known feature points are used        
to initialize the system. Shi-tomasi features are used        
due to their efficiency in calculation for initializing        
patch features. These are then localized based on        
particle filtration. The patches are stored as the        
landmarks that form the map. After that,       
improvements will be made on the visual SLAM. The         
PTAM (parallel tracking and mapping) [18] project       
separates localization and mapping with multi      
threading, and uses bundle adjustment both locally       
and globally to ensure the convergence. Although       
visual SLAM can be seen to solve the drifting         
problem, once the mismatching happens, extra      
computational work is needed to stop divergence. 
Fiala and Ufkes in [19] proposed a visual odometry         
system that can estimate the 3D pose of a mobile          
platform using monocular video data and associated       
3D depth data, as provided by Microsoft’s Kinect        
sensor. In their work, stereo matching is thus        
avoided, and matching is only performed between       
images from different times. They utilized standard       
feature detectors, SIFT, but match between 3D points        
to calculate pose change directly. 

4. Robot Setup and camera calibration 
For this project, a Roomba iCreate 2 mobile robot         
controlled by a joystick is used. The vision system is          
Microsoft Kinect One, which is mounted on top of         
the robot along with LIDAR. All code for the         
Roomba system is in Python and a ROS package is          
developed for communication between different     
components in the system.  
The camera parameters are calibrated using the       
camera calibration toolbox on Matlab software. The       
reprojection errors are below one pixel. The intrinsic        
parameters of the monocular camera include: focal       
length 528.4 pixel/m and principal point (323.2,       
264.7) pixel.  

  

Figure 1. Robot and vision setup  

4. Proposed approach 
4.1. Monocular Visual Odometry 
First, we did a literature review on visual odometry         
methods. Considering different types of cameras and       
input information, visual odometry can be separated       
into monocular visual odometry, binocular odometry,      
and VO with a RGBD camera. The differences will         
be discussed below. 
The classical monocular VO method will only       
determine the rotation matrix R and the direction of         
movement between two matched frames. The      
distance of the translation is not found. Usually, the         
monocular method assumes some prior knowledge of       
the waypoint, either when it starts, or while it moves.          
The assumption can be either that the initial        
movement is purely translational without rotation, or       
started with some pre-known markers. Some methods       
also assume that all the detected features during the         
movement are on the ground plane. If no assumption         
is made, the monocular VO requires other odometry        
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information, e.g. GPS signal or wheel odometry from        
a ground robot. 
Binocular VO, on the other hand, does not require         
such prior knowledge while running. It requires       
higher calculation since an extra step is required to         
compute the depth information of features in two        
frames from two cameras. 
VO with a RGB-D camera can get the depth of          
feature directly from the camera. The computational       
complexity for this method should be the lowest. The         
main disadvantage of using a RGB-D camera is that         
the IR sensor used to get depth information is only          
valid for indoor applications due to the high        
illumination that exists outdoor affecting the distance       
measurement. We chose the Kinect RGB-D camera       
to get depth information directly and only worry        
about the calculation between two continuous frames.       
Currently we implement the fovis library for Kinect        
[20]. The method implements the localization with       
the following steps: 

1. Image preprocessing with Gaussian blur and      
Gaussian pyramid.  

2. Feature extraction using the FAST detector.  
3. Initial rotation estimation basically from a      

downsampled frame to roughly estimate     
rotation. This is used to help matching. 

4. Feature matching, features from the FAST      
detector with a patch of 9x9 pixel. 

5. Inlier detection, using a method similar to       
RANSAC.  

6. Motion estimation, based off of a keyframe       
where small rotation or translation will not       
affect the keyframe and each new frame is        
matched to the keyframe. 

We also have monocular VO and binocular VO        
partially implemented. For monocular VO, we      
developed a package in ROS using what we learned         
in the class. The steps are: 

1. Capturing image from camera. 
2. Undistorting the image. 
3. Detecting feature using FAST algorithm.  
4. Using RANSAC to compute the essential      

matrix. 
5. Estimating the rotation matrix and direction      

vector.  
6. Read in the scalar from the wheel odometry. 

The binocular VO is partially done using the similar         
step but with an extra calculation of depth for         
features using a calibrated camera. The estimation of        
translational distance is what we need to do in the          
next step. 
A package that can switch between the RGB-D VO         
and binocular VO is developed to enable the Kinect         
to work both indoor and outdoor.  

To better illustrate our monocular visual odometry,       
the following steps are listed to show how Monocular         
VO works. 

1. Read image from the camera  
2. Undistort image based on calibration data  
3. Find matched features in the current image       

from previous image  
4. Calculate fundamental matrix  
5. Get rotation matrix and translation vectors      

from fundamental matrix  
6. Combine the wheel odometry from Roomba      

for scaling  
7. Integrate R and t  
8. Find new features when the number of       

available features drops below certain     
threshold  

 
4.2. RGB-D SLAM 
In previously discussed methods, drift appears as       
error is made in feature detection, rotational, and        
traditional matrix integration. Monocular and     
binocular vision only compares sequential images.      
This makes the errors cumulative as time continues.        
Though efforts can be made to reduce the rate of          
drift, error is eminent. 
In contrast the SLAM methodology makes use of past         
exploration data to reduce drift. This is through a         
process called loop closure which will be described        
later. In the methodology described by Labbe and        
Michaud [21] a RGB-D sensor was used. As the past          
exploration data is utilized, a graph structure is        
needed to quickly access and search. The nodes        
contain visualization information such as RGBD      
images and SURF features. SURF features are       
preferred when compared to SIFT as the scale        
invariance may cause feature matches when an object        
is at different scales. The relative scale can be used to           
better determine translational movements. Edges     
within the graph are the odometry transformation. A        
graph increases search speeds by reducing the search        
area. Once a location within the graph is found, the          
process relative location search is reduced to       
neighboring nodes for small changes in translation       
and rotation. 
A bayesian filter is used to evaluate a hypothesis over          
the stored nodes. Once a loop closure hypothesis        
reaches a predefined threshold, a loop closure is        
detected. The threshold testing is done using a visual         
dictionary of SURF features. With two potential       
matching images and RGB-D data, the 3D location of         
the visual words is calculated.  
Using a very similar approach as in class, these two          
images are matched using RANSAC. If a computed        
fundamental matrix is found to have a sufficient        
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amount of inliers, the loop closures are accepted and         
an edge between the two portion of the graph is          
added. For larger maps, a search over the entire graph          
is computationally complex and cannot be done in        
real time. Insead, a subset of images scattered        
throughout the graph is selected and searched       
through. 

4.3. Comparison of different localization methods 
The main method used as a baseline is the robot’s          
wheeled odometry, which is available on the Roomba        
platform. An onboard LIDAR sensor is used for        
online comparison. Although LIDAR is expensive      
and lacks rich information on the environment, it can         
provide accurate position and orientation of the       
robots. In addition, GPS is used to obtain the global          
position knowledge for outdoor experiments. The      
GPS signal is not available in indoor and urban         
applications due to signal blockage and attenuation.       
Signal disruptions may even happen outdoor      
occasionally due to interference with the      
environment.  

4.4. Map Generation 
Each RGB-D image is a data rich image that can be           
easily converted to a RGB point cloud. This point         
cloud is based upon the camera frame. Through        
processes discussed previously, the camera global      
position and orientation is known. With this data, the         
each point can be transformed into the base reference         
frame. All of the images can be combined together to          
form a color map of the 3D space. In our case, the            
point clouds were stored in a database and        
incrementally added to RVIZ for visualization. 

5. Results 

The experiment was carried out for both indoor and         
outdoor environments verifying that the algorithm      
works properly. In the indoor experiment, we       
compared the RGB-D SLAM algorithm with      
LIDAR-based SLAM and monocular visual     
odometry. The outdoor test was to compare       
monocular visual odometry, wheel odometry, and      
GPS. 

5.1. Indoor 
The indoor test was setup in the MEB building. In          
order for the LIDAR to work, we built a small and           
customized environment also with feature rich walls.       
Figures 2-5 show snapshots of the experiments and        
final results. As we can see in the figure, the LIDAR           
SLAM can accurately build the grid map with the         
explored area shown in white, and the unexplored        

marked gray. The current LIDAR position is marked        
with the blue-green-red axis. Unfortunately, the      
LIDAR odometry is not shown. The odometry from        
RGB-D vision is plotted in orange arrows. It is clear          
that the RGB-D visual localization is slightly to the         
left of the LIDAR SLAM position. This is probably         
because, when the map was initially built, the visual         
odometry drifted and the loop closure correction had        
not taken effect yet. 
 

 
Figure 2. Environment and robot setup for indoor test. 
 

 
Figure 3. Indoor localization using graph-based SLAM       
with Kinect, LIDAR, and robot odometry.  

 

 
Figure 4. Generated 3D map of the indoor environment we          
made. Some posters we used as wall, the bumblebee action          
figure, water bottle, chair, and windows are visible in the          
generated point cloud. 
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Figure 5. 3D map of our office generated by graph-based 
SLAM algorithm. 

5.2. Outdoor 
The algorithm using monocular vision and robot       
odometry was developed to be used outdoor when the         
Kinect’s IR sensor is saturated. We did the        
experiment outdoor (outside of the MEB building)       
where we thought we had enough features including        
trees and buildings. However, we achieved poor       
results. We believe it is due to two reasons. First, the           
algorithm heavily relies on robot odometry and the        
Roomba robot is not designed to be used outdoor on          
cement pavement. We saw a lot of slipping and the          
robot got stuck several times on rocks and cracks.         
Hence, we experienced poor odometry and as a        
result, poor localization. Second, the number of       
detected features was low which affected our       
localization accuracy. 
We also got data from GPS, LIDAR, and graph-based         
SLAM for comparison. Results of the outdoor test are         
shown in Figures 6-10. 
 

 
Figure 6. Outdoor localization setup using monocular       
vision, robot odometry, and GPS. 

 

 
Figure 7. Result of outdoor localization and comparison        
between different methods Monocular Odometry, Wheeled      
Odometry, LIDAR, and GPS. 

 

 
Figure 8. Error for localization using monocular vision. 
 

 
Figure 9. Error for localization using LIDAR. 
 

 
Figure 10. Error for localization using GPS. 
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6. Discussion and Future Work 

In this project, we implemented different methods for        
visual localization of a mobile robot. As results        
showed, graph-based SLAM works better than all       
other approaches, including LIDAR, for indoor use.  

As future work, we can try to make the code work           
faster by customizing it for special applications and        
reduce the number of ROS topics. We also should try          
to fix the problem of low number of detected features          
in monocular vision code for outdoor localization.       
Finally, we should finish the automatic transition       
between indoor and outdoor environments in our       
ROS package. 
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