
Mobile Robot Visual Localization and 3D Map Generation
(Computer Vision Project Final Report)

Xiang He
Mechanical Engineering

University of Utah
hexiang422@gmail.com

 Dejun Guo
Mechanical Engineering

University of Utah
dejunguo422@gmail.com

Jacob Harris
Mechanical Engineering

University of Utah
jacob84401@gmail.com

 Roya Sabbagh Novin

Mechanical Engineering
University of Utah

roya.sabbaghnovin@utah.edu

Amir Yazdani
Mechanical Engineering

University of Utah
mojtaba.yazdani@utah.edu

Abstract
In this project, the visual localization is implemented
on a mobile robot using Kinect. The method used for
localization is RGB-D SLAM. In addition, a 3D map
is generated based on all collected images. Results
show that this method is accurate and comparable to
LIDAR and robot odometry.

1. Problem Statement
Mobile robots are commonly used across research
and industry. In this context, robot localization is
often one of the major challenges in robot control. In
an indoor environment with a flat floor plan,
localization is identified as a problem of estimating
the pose, i.e. position and orientation of a mobile
robot, when the map of the environment, sensor
readings, and executed actions of the robot are
provided [1].
For purpose of this project, we will implement the
Visual Odometry method on a Roomba iCreate 2,
equipped with a Microsoft Kinect RGB-D sensor, for
localization and map generation. We are going to
evaluate our approach by comparing localization
results with robot odometry results, LIDAR sensor
localization, and GPS.

2. Introduction and Motivation

Many existing methods for robot localization are
based on GPS, laser odometry, wheel odometry,
sonar sensors or artificial landmarks [2, 3]. All of
these methods have their strengths and weaknesses.
For example, GPS is prone to signal loss, laser based

systems are heavy and expensive, and wheel
odometry is susceptible to slip and drift overtime [4].
Alternatively, monocular camera visual odometry can
be used and has many positive aspects. The system is
relatively inexpensive, extremely light, and cameras
utilize our rich colored world. It has been
demonstrated that Visual Odometry will oftentimes
produce better results than Wheeled Odometry and
can have as low as 0.1% tracking error [4]. To further
reduce drift, a visual odometry system may be
combined with GPS, laser, and IMU data [5, 6, 7]. A
visual system can also create a map to be used in the
future for navigation systems or further analysis.
In this method, it is assumed that a monocular camera
is rigidly fixed on a mobile robot. It is not necessary
to know the environment. A video is filmed while the
robot moves and point features are matched between
pairs of frames and linked into image trajectories at
video rate using the Harris Corners Technique. Then,
the camera motion can be estimated robustly from the
feature tracks using a geometric hypothesize-and-test
architecture [8]. The key points and images can be
stored as a map to be used by the robot to prevent
drift over time [9].
In this project, we will implement a Visual Odometry
method on a Roomba iCreate 2 which is equipped
with a Microsoft Kinect RGB-D sensor for
localization and map generation. Although the mobile
robot is moving on a 2D plane (ground), the
localization and map generation algorithms are for
3D environments, so the final results are in 3D. At
the end, we will evaluate our approach by comparing
resulted localization with results from robot
odometry, LIDAR sensor localization, or GPS data.

1

Finally, it should be mentioned that we are going to
make a ROS package which includes different nodes
for various parts of the algorithm.

3. Prior Art
Many solutions have been proposed for the pose
estimation of mobile robots employing Kalman
filtering [10], particle filtering [11, 12], and Markov
localization [13]. Ganganath and Leung in [14]
proposed an accurate and low cost mobile robot
localization method using odometry and a Kinect
sensor. The odometry model they used is capable of
tracking any arbitrary robot motion. They have fused
odometry and the Kinect sensor measurements using
the extended Kalman filter (EKF) and the particle
filter (PF) to provide more accurate localization
results.
Vision-based localization and mapping algorithm
using SIFT features is proposed in [2,15]. Being scale
and orientation invariant, SIFT features are good
natural visual landmarks for tracking over long
periods of time from different views, to correct
odometry locally. This algorithm has also been
extended for global localization [16].
Compared to the visual odometry method where the
map generated is a by-product, visual SLAM
(simultaneous localization and mapping) generates a
map to help localization. New features will be added
into the map as new areas are explored. Andrew, et
al. [17] first introduced the monocular visual slam
algorithm where three known feature points are used
to initialize the system. Shi-tomasi features are used
due to their efficiency in calculation for initializing
patch features. These are then localized based on
particle filtration. The patches are stored as the
landmarks that form the map. After that,
improvements will be made on the visual SLAM. The
PTAM (parallel tracking and mapping) [18] project
separates localization and mapping with multi
threading, and uses bundle adjustment both locally
and globally to ensure the convergence. Although
visual SLAM can be seen to solve the drifting
problem, once the mismatching happens, extra
computational work is needed to stop divergence.
Fiala and Ufkes in [19] proposed a visual odometry
system that can estimate the 3D pose of a mobile
platform using monocular video data and associated
3D depth data, as provided by Microsoft’s Kinect
sensor. In their work, stereo matching is thus
avoided, and matching is only performed between
images from different times. They utilized standard
feature detectors, SIFT, but match between 3D points
to calculate pose change directly.

4. Robot Setup and camera calibration
For this project, a Roomba iCreate 2 mobile robot
controlled by a joystick is used. The vision system is
Microsoft Kinect One, which is mounted on top of
the robot along with LIDAR. All code for the
Roomba system is in Python and a ROS package is
developed for communication between different
components in the system.
The camera parameters are calibrated using the
camera calibration toolbox on Matlab software. The
reprojection errors are below one pixel. The intrinsic
parameters of the monocular camera include: focal
length 528.4 pixel/m and principal point (323.2,
264.7) pixel.

Figure 1. Robot and vision setup

4. Proposed approach
4.1. Monocular Visual Odometry
First, we did a literature review on visual odometry
methods. Considering different types of cameras and
input information, visual odometry can be separated
into monocular visual odometry, binocular odometry,
and VO with a RGBD camera. The differences will
be discussed below.
The classical monocular VO method will only
determine the rotation matrix R and the direction of
movement between two matched frames. The
distance of the translation is not found. Usually, the
monocular method assumes some prior knowledge of
the waypoint, either when it starts, or while it moves.
The assumption can be either that the initial
movement is purely translational without rotation, or
started with some pre-known markers. Some methods
also assume that all the detected features during the
movement are on the ground plane. If no assumption
is made, the monocular VO requires other odometry

2

information, e.g. GPS signal or wheel odometry from
a ground robot.
Binocular VO, on the other hand, does not require
such prior knowledge while running. It requires
higher calculation since an extra step is required to
compute the depth information of features in two
frames from two cameras.
VO with a RGB-D camera can get the depth of
feature directly from the camera. The computational
complexity for this method should be the lowest. The
main disadvantage of using a RGB-D camera is that
the IR sensor used to get depth information is only
valid for indoor applications due to the high
illumination that exists outdoor affecting the distance
measurement. We chose the Kinect RGB-D camera
to get depth information directly and only worry
about the calculation between two continuous frames.
Currently we implement the fovis library for Kinect
[20]. The method implements the localization with
the following steps:

1. Image preprocessing with Gaussian blur and
Gaussian pyramid.

2. Feature extraction using the FAST detector.
3. Initial rotation estimation basically from a

downsampled frame to roughly estimate
rotation. This is used to help matching.

4. Feature matching, features from the FAST
detector with a patch of 9x9 pixel.

5. Inlier detection, using a method similar to
RANSAC.

6. Motion estimation, based off of a keyframe
where small rotation or translation will not
affect the keyframe and each new frame is
matched to the keyframe.

We also have monocular VO and binocular VO
partially implemented. For monocular VO, we
developed a package in ROS using what we learned
in the class. The steps are:

1. Capturing image from camera.
2. Undistorting the image.
3. Detecting feature using FAST algorithm.
4. Using RANSAC to compute the essential

matrix.
5. Estimating the rotation matrix and direction

vector.
6. Read in the scalar from the wheel odometry.

The binocular VO is partially done using the similar
step but with an extra calculation of depth for
features using a calibrated camera. The estimation of
translational distance is what we need to do in the
next step.
A package that can switch between the RGB-D VO
and binocular VO is developed to enable the Kinect
to work both indoor and outdoor.

To better illustrate our monocular visual odometry,
the following steps are listed to show how Monocular
VO works.

1. Read image from the camera
2. Undistort image based on calibration data
3. Find matched features in the current image

from previous image
4. Calculate fundamental matrix
5. Get rotation matrix and translation vectors

from fundamental matrix
6. Combine the wheel odometry from Roomba

for scaling
7. Integrate R and t
8. Find new features when the number of

available features drops below certain
threshold

4.2. RGB-D SLAM
In previously discussed methods, drift appears as
error is made in feature detection, rotational, and
traditional matrix integration. Monocular and
binocular vision only compares sequential images.
This makes the errors cumulative as time continues.
Though efforts can be made to reduce the rate of
drift, error is eminent.
In contrast the SLAM methodology makes use of past
exploration data to reduce drift. This is through a
process called loop closure which will be described
later. In the methodology described by Labbe and
Michaud [21] a RGB-D sensor was used. As the past
exploration data is utilized, a graph structure is
needed to quickly access and search. The nodes
contain visualization information such as RGBD
images and SURF features. SURF features are
preferred when compared to SIFT as the scale
invariance may cause feature matches when an object
is at different scales. The relative scale can be used to
better determine translational movements. Edges
within the graph are the odometry transformation. A
graph increases search speeds by reducing the search
area. Once a location within the graph is found, the
process relative location search is reduced to
neighboring nodes for small changes in translation
and rotation.
A bayesian filter is used to evaluate a hypothesis over
the stored nodes. Once a loop closure hypothesis
reaches a predefined threshold, a loop closure is
detected. The threshold testing is done using a visual
dictionary of SURF features. With two potential
matching images and RGB-D data, the 3D location of
the visual words is calculated.
Using a very similar approach as in class, these two
images are matched using RANSAC. If a computed
fundamental matrix is found to have a sufficient

3

amount of inliers, the loop closures are accepted and
an edge between the two portion of the graph is
added. For larger maps, a search over the entire graph
is computationally complex and cannot be done in
real time. Insead, a subset of images scattered
throughout the graph is selected and searched
through.

4.3. Comparison of different localization methods
The main method used as a baseline is the robot’s
wheeled odometry, which is available on the Roomba
platform. An onboard LIDAR sensor is used for
online comparison. Although LIDAR is expensive
and lacks rich information on the environment, it can
provide accurate position and orientation of the
robots. In addition, GPS is used to obtain the global
position knowledge for outdoor experiments. The
GPS signal is not available in indoor and urban
applications due to signal blockage and attenuation.
Signal disruptions may even happen outdoor
occasionally due to interference with the
environment.

4.4. Map Generation
Each RGB-D image is a data rich image that can be
easily converted to a RGB point cloud. This point
cloud is based upon the camera frame. Through
processes discussed previously, the camera global
position and orientation is known. With this data, the
each point can be transformed into the base reference
frame. All of the images can be combined together to
form a color map of the 3D space. In our case, the
point clouds were stored in a database and
incrementally added to RVIZ for visualization.

5. Results

The experiment was carried out for both indoor and
outdoor environments verifying that the algorithm
works properly. In the indoor experiment, we
compared the RGB-D SLAM algorithm with
LIDAR-based SLAM and monocular visual
odometry. The outdoor test was to compare
monocular visual odometry, wheel odometry, and
GPS.

5.1. Indoor
The indoor test was setup in the MEB building. In
order for the LIDAR to work, we built a small and
customized environment also with feature rich walls.
Figures 2-5 show snapshots of the experiments and
final results. As we can see in the figure, the LIDAR
SLAM can accurately build the grid map with the
explored area shown in white, and the unexplored

marked gray. The current LIDAR position is marked
with the blue-green-red axis. Unfortunately, the
LIDAR odometry is not shown. The odometry from
RGB-D vision is plotted in orange arrows. It is clear
that the RGB-D visual localization is slightly to the
left of the LIDAR SLAM position. This is probably
because, when the map was initially built, the visual
odometry drifted and the loop closure correction had
not taken effect yet.

Figure 2. Environment and robot setup for indoor test.

Figure 3. Indoor localization using graph-based SLAM
with Kinect, LIDAR, and robot odometry.

Figure 4. Generated 3D map of the indoor environment we
made. Some posters we used as wall, the bumblebee action
figure, water bottle, chair, and windows are visible in the
generated point cloud.

4

Figure 5. 3D map of our office generated by graph-based
SLAM algorithm.

5.2. Outdoor
The algorithm using monocular vision and robot
odometry was developed to be used outdoor when the
Kinect’s IR sensor is saturated. We did the
experiment outdoor (outside of the MEB building)
where we thought we had enough features including
trees and buildings. However, we achieved poor
results. We believe it is due to two reasons. First, the
algorithm heavily relies on robot odometry and the
Roomba robot is not designed to be used outdoor on
cement pavement. We saw a lot of slipping and the
robot got stuck several times on rocks and cracks.
Hence, we experienced poor odometry and as a
result, poor localization. Second, the number of
detected features was low which affected our
localization accuracy.
We also got data from GPS, LIDAR, and graph-based
SLAM for comparison. Results of the outdoor test are
shown in Figures 6-10.

Figure 6. Outdoor localization setup using monocular
vision, robot odometry, and GPS.

Figure 7. Result of outdoor localization and comparison
between different methods Monocular Odometry, Wheeled
Odometry, LIDAR, and GPS.

Figure 8. Error for localization using monocular vision.

Figure 9. Error for localization using LIDAR.

Figure 10. Error for localization using GPS.

5

6. Discussion and Future Work

In this project, we implemented different methods for
visual localization of a mobile robot. As results
showed, graph-based SLAM works better than all
other approaches, including LIDAR, for indoor use.

As future work, we can try to make the code work
faster by customizing it for special applications and
reduce the number of ROS topics. We also should try
to fix the problem of low number of detected features
in monocular vision code for outdoor localization.
Finally, we should finish the automatic transition
between indoor and outdoor environments in our
ROS package.

7. References

[1] J.S. Gutmann and D. Fox, “An Experimental
Comparison of Localization Methods Continued,” in
Proc. IEEE/RSJ Int. Conf. Intelligent Robots and
Systems, 2002, vol. 1, pp. 454 – 459
[2] S. Se, D. Lowe, and J. Little. "Mobile robot
localization and mapping with uncertainty using
scale-invariant visual landmarks." The international
Journal of robotics Research 21.8 (2002): 735-758.
[3] A. Babinecj, L. Jurišica, P. Hubinský, and F.
Duchoň. "Visual Localization of Mobile Robot Using
Artificial Markers." Procedia Engineering 96 (2014):
1-9.
[4] D.Scaramuzza, and F. Fraundorfer. "Visual
odometry [tutorial]." IEEE robotics & automation
magazine 18.4 (2011): 80-92.
[5] K. Konolige, M. Agrawal, and J. Sol, “Large
scale visual odometry for rough terrain,” in Proc.
Int. Symp. Robotics Research, 2007.
[6] A. I. Mourikis and S. Roumeliotis, “A multi-state
constraint kalman filter for vision-aided inertial
navigation,” in Proc. IEEE Int. Conf. Robotics and
Automation, 2007, pp. 3565–3572.
[7] E. Jones and S. Soatto, “Visual-inertial
navigation, mapping and localization: A scalable
real-time causal approach,” Int. J. Robot. Res., vol.
30, no. 4, pp. 407–430, 2010.
[8] D. Nistér, O. Naroditsky, and J. Bergen, “Visual
odometry”. In Computer Vision and Pattern
Recognition, CVPR 2004.
[9] Y. Matsumoto, M. Inaba, and H. Inoue. Visual
Navigation Using View Sequenced Route
Representation. In Proc. of IEEE Int’l Conf. on
Robotics and Automation (ICRA), volume 1, pages
83–88, 1996.

[10] E. Kiriy and M. Buehler, “Three-State Extended
Kalman Filter for Mobile Robot Localization,” Tech.
Rep., McGill University, Montreal, Canada, 2002.
[11] I. Rekleitis, “Cooperative Localization and
Multi-robot Exploration” , Ph.D. thesis, School of
Computer Science, McGill University, Montreal,
Canada, 2003.
[12] F. Dellaert, D. Fox, W. Burgard, and S. Thrun,
“Monte Carlo Localization for Mobile Robots,” in
Proc. IEEE Int. Conf. Robotics and Automation ,
May 1999, vol. 2, pp. 1322 –1328.
[13] D. Fox, W. Burgard, and S. Thrun, “Markov
Localization for Mobile Robots in Dynamic
Environments,” Journal of Artificial Intelligence
Research , vol. 11, no. 3, pp. 391–427, 1999
[14] N. Ganganath, and H. Leung. "Mobile robot
localization using odometry and kinect sensor.",
IEEE International Conference on Emerging Signal
Processing Applications (ESPA), 2012.
[15] S. Se, D. Lowe, and J. Little. "Local and global
localization for mobile robots using visual
landmarks." IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2001.
[16] V. Ayala, J. Hayet, F. Lerasle, and M.l Devy.
"Visual localization of a mobile robot in indoor
environments using planar landmarks." IEEE/RSJ
International Conference on Intelligent Robots and
Systems, 2000.
[17] A. J. Davison, et al. "MonoSLAM: Real-time
single camera SLAM." IEEE transactions on pattern
analysis and machine intelligence 29.6, 2007.
[18] G. Klein, and D. Murray. "Parallel tracking and
mapping for small AR workspaces." 6th IEEE and
ACM International Symposium on Mixed and
Augmented Reality(ISMAR), 2007.
[19] M. Fiala, and A. Ufkes. "Visual odometry using
3-dimensional video input." Canadian Conference on
Computer and Robot Vision (CRV), 2011.
[20] Huang, Albert S., et al. "Visual odometry and
mapping for autonomous flight using an RGB-D
camera." Robotics Research. Springer International
Publishing, 2017. 235-252.
[21] Labbe, Mathieu, and François Michaud. "Online
global loop closure detection for large-scale
multi-session graph-based slam." IEEE/RSJ
International Conference on Intelligent Robots and
Systems, 2014.

6

