
Collision-Free Push Planning for Manipulation of A
Box with A Roomba Robot

Amir Yazdani∗, Jacob Harris†, Heath J. French‡, Yangyang Zhao§
∗Department of Mechanical Engineering, University of Utah, Salt Lake City, Utah, Email: mojtaba.yazdani@utah.edu
†Department of Mechanical Engineering, University of Utah, Salt Lake City, Utah, Email: jacob84401@gmail.com

‡School of Computing, University of Utah, Salt Lake City, Utah, Email: heath.french@utah.edu
§Department of Mechanical Engineering, University of Utah, Salt Lake City, Utah, Email: yyang.zhao360@gmail.com

Abstract—The capacity to live independently is a major
concern for the elderly. Technology geared toward helping the
elderly live independently is growing. This project for ME EN
6225 proposes a push planning algorithm for the simplified
problem in which a mobile robot pushes a walker to the elderly
when they want to get up from bed. The proposed algorithm
uses a combination of A* and RRT planning algorithm to
solve manipulation of a box (walker). Its performance has been
evaluated through simulation studies on different environments
as presented in the result figures.

I. INTRODUCTION

Mobility is one of the most important factors that con-
tributes to quality of life. Physical degradation, because of
age or illness, often decreases mobility and increases falls,
leading to a downhill spiral of physical impairments including
lack of independence. Each year, about 35% of individuals
over age 65 experience one or more falls. Falls are the third
leading cause of chronic disability worldwide6. The bedroom
is the place where most falls occur within the home [1]. In
the hospital, patient falls occur most frequently at the bedside,
and some of the areas researchers have reported that the rate
of bedside falls account for 50% of all falls [2] [3].
Currently, there are some technologies such as bed rails [4] or
smart walkers [5] to help elderlies with getting up from bed
or sitting on a coach. Bed rail are cheap affordable but they
are passive and still human power is required to use them to
get up. Smart walker are expensive and commercial ones are
not smart enough to be used daily by elderlies.
In this project, authors tried to address the the concerns with
home falls with a low-cost, intelligent mobile robot that will
provide mobility aids, such as a walker, in the event that it
determines that risk of fall is high.. The idea is shown in Fig.
1.
As a course project for ME EN 6225, a simplified ver-
sion of the aforementioned bigger problem was defined in
a simulation-based approach. In the proposed project, the
problem includes the manipulation of a walker around an
obstacle-filled area using a Roomba robot from a start position
to a goal position. For simulation studies, all objects will be
projected to the 2D plane. The Roomba as a circle, the walker
as a box, and obstacles as simple polygons.
Several assumptions for the problem have been made:
• Only pushing has been used for manipulating the box.

Fig. 1: When fall risk is high, such as when a person wants
to get out of bed, robot brings a walker to him

• Start and goal position of the box and start position of
the robot are known.

• Obstacles and their position are known.

The proposed approach to solve the above problem includes a
high-level planner for push planning for the box and a lower-
level planner for motion planning of the robot. Based on what
has been learned up to the point of proposal, a modified A*
planning algorithm as a high-level planner in combination with
RRT algorithm were proposed as the solution.
The main contribution of this project is the development of a
collision-free push planning algorithm for a box by a Roomba
robot which includes a higher-level A* planner and a lower-
level RRT planner. Simulation studies have been done in
Python for different environments and with different start and
goal positions for the robot and box. Results reveal the ability
of the algorithm to do a collision-free manipulation for the
box.

The report is organized as follows: A review on related
works on fall prevention robots, care-providing robots, pushing
and manipulation of objects by robots, and a related motion
planning algorithm have been presented in section 1. Section
2, illustrates the approach and methods that have been used in
the the solution algorithm for the problem. Modified A* and
RRT are introduced in detail. Simulation studies and results for
different environments are presented and discussed in section
4. Section 5 will cover analysis of the proposed algorithm. The



conclusion, discussion and future directions for the project are
presented in Section 6.

II. RELATED WORKS

Several researches have been done using robots for care-
providing.

In field of pushing, Mason and Lynch [6] presented a model
of the dynamics of pushing by a manipulator. Salganicoff et
al. [7] created a forward model of object for pushing which
used vision feedback. Later, learning algorithms were used to
learn dynamic model of pushing objects and predicting result
of pushing on unkown objects [8], [9]. Several researches
have tried to learn the best contant location for a successful
push [10]. They focus on extracting the shape of the object
and determining contact locations that are good for pushing.
Hermans et al. [11] provided an data-driven method for pre-
dicting proper contact locations for pushing unknown objects
using vision. They also proposed a method for extracting the
2D shape of an object and generate points for performing
pushing tests. They were pushing towards the centroid of the
object from a given point using the feedback controller. Several
researches also focused on delivery of an object from one
position to another position. Quingguo et. al. [12] focused
on finding appropriate pushing actions and developing a push
planner which will complete the task using these actions. The
planner they developed is based on a set of assumptions and a
simplified model of two-agent point-contact push. They used
that model for an off-line preprocessing step to identify push
primitives. They showed that Under two-agent point-contact
push, an object could exhibit a very complicated behavior and
outcome of a push will depend on the pressure distribution,
the geometry of the object, and the contact conditions.

III. APPROACHES AND METHODES

As previously mentioned, the proposed algorithm uses A*
as the high-level planner and RRT as a low-level planner. They
are discussed in detail as follows:

A. A* As The High-level Planner

The standard A* graph search algorithm requires a known
graph to search over. The search over this graph is complete
and optimal with respect to the path length. This situation
involves pushing a box through an environment where only
the location of the box, robot, goal, and obstacles are known.
A graph must be created in order to perform the search. Each
state in the graph is a state that the box is able to achieve. The
box is unable to move of its own accord and therefore requires
an action, or push, by the robot to transition it into a new state.
The robot transitions the box into a new state by pushing the
box a small distance epsilon in a direction perpendicular to the
box face. The location at which the push occurs is potentially
all points on the parameter of the box. If all of the continuous
push points were considered, the graph would be infinite and
the A* search over this graph would no longer complete and
would have infinite time and space complexity. To resolve this

(a) (b)

Fig. 2: Tests to pass before adding a node to the graph: a) first
test, b) second test

problem, a discrete set of push points should be chosen. For
the project, four push points were selected at the center of
each side of the box.
It is not always possible for the robot to perform a given push
action. This is because there might be obstacles blocking the
robots access to a particular push point. If this is the case, the
resulting state that a push would cause can never be achieved
and should not be included in the boxs graph.
It is also possible that a given box movement may cause
collision between the box and the environment, or a collision
between the robot and the environment. Here, an assumption
is made that the boxs width and height are greater than the
boxs radius. It is also assumed that the push points are located
inwardly enough on the box such that the robot will always
be shadowed by the box during a push. This assumption
guarantees that the robot will not come in collision with
the environment during a pushing operation. If the box itself
collides with the environment, the movement is not possible
and the state in collision is not included in the search graph.
Thus it can be seen that for a state to be added to the graph
during graph creation, it should pass two tests:

1) Robot can achieve state necessary to enact the pushing
action on the box.

2) A given push should not cause the box to be in collision
with the environment.

Fig.2(a) and (b) demonstrates when a test 1 and test 2 failure
would occur. A single test failure will cause the resulting box
state to be dismissed as a graph state candidate. To reduce
computational time in the event of a test failure, the most
efficient test should be performed first. The test of a box
collision with the environment is relatively non-complex when
compared to testing if the robot planner can achieve a push
point. This test, in many cases, involves a full RRT. Therefore
the box collision test should be performed first.
With a method in place for graph creation, the order of graph
creation and graph search should be established. Common
convention would dictate that an entire graph should be created
then searched over using a graph search algorithm. For this
application, the graph creation is the most time intensive oper-
ation. Therefore it is desired to only create graph vertices when
they will be actively involved in the search. The knowledge



of whether a vertex will be utilized only becomes available
during the expansion phase of the A* graph search algorithm.
While determining if the robot can achieve a push point
location, a robot plan is created. To avoid unnecessary re-
calculation of the robot plan, the plan is stored in conjunction
with each node in the A* tree. Once the box goal is achieved,
the robot plans are concatenated together in the back path. A*
utilizes a summation of the backward path cost and a heuristic
forward cost. This summation of costs is used when choosing
the next node to expand. The heuristic used was the L2 norm
or Euclidean distance.

Costtotal = h(s) + g(s) (1)

h(s) =
√
(x1 − x1goal)2 + (x2 − x2goal)2 (2)

g(s) =

size of backpath∑
i=0

cost(i) (3)

The total value was calculated and added into the priority
queue only after the graph expansion tests were passed.
A check was completed to determine if a state had been
previously visited and also to determine if a state was already
in the queue at a higher cost. If the state existed at a higher
cost, it was replaced with the lower cost node.

Algorithm 1 Push planning algorithm

1: n0← Initial Node
2: queue← n0
3: while queue 6= empty do
4: ni = queue.pop()
5: visited.append(ni)
6: if ni is whithin of goal then
7: return backpath
8: for a inBoxActions do
9: s′ = transitionfun(a, ni, boxtesp)

10: if s not in collision then
11: if push point is reachable then
12: G = robot path cost +

previous plan cost
13: H = Heuristic
14: Costtotal = G+H
15: if s not in visited then
16: queue← s′

17: if s is in visited with higher cost then
18: replace(s′)

19: return no plan available
20:

B. RRT as the low-level planner

The available box actions are dependent on the robots
capacity to perform the movement. A plan must be generated
for every possible action that the A* graph search algorithm
tries to use to branch. The plans produced for the robot can
vary in complexity. This means that a cost must also be

connected to each plan for A* to properly determine which
state should be evaluated next. The robot planner is separated
into two different phases. First, the planner determines if the
robot is simply moving around the box to a different side and
if no obstacles are near the box. This is done by creating a
Big Box which is greater than the diameter of the robot on
all sides and is located at the same location as the box. If
this box is not in collision, then the shortest path around the
box is created using another Medium Box that is greater than
the radius of the robot on all sides. The corner points making
up this Medium Box are known to be safe for the robot to
reach. If the conditions for the simple plan are not met, then
the planner uses RRT-connect to find a path to its goal.
The cost of the paths generated by the robot path planner
are based on the step-size chosen for RRT-connect. For an
RRT based plan, the number of actions required in the plan
is returned. For a simple plan around the box, the total length
of all the movements is taken and then divided by the step-
size. Since the cost for turning our robot in these paths is not
included, RRT-connect was specifically chosen since it would
reduce the number of times that turning would be required.

C. Environment Modeling

In order to perform computational simulations that are both
clear and close to the real world, environment files have been
generated to describe the 2-dimensional space. There are four
elements initialized in environment files. These are the robot,
box, obstacles, and boundaries.
The robot is represented as a simple circle and is defined by
a radius and a center point. Similarly, the box is represented
by its center point, width and height. The position of the start
location for the box and robot are defined. The location of the
box goal is also defined.
As a simplification of real world objects, the obstacles are
modeled as convex polygons defined by a sequence of vertices.
Boundaries have been generated by assigning minimum and
maximum values both for x-axis and y-axis. This is essential,
as it will be used to prevent the robot from pushing the box
into unknown fields.

D. Actions and Transition Function

As mentioned previously, the robot is only able to interact
with the box at four push points. The push of the robot
causes the box to change state. The amount of change in the
box location is determined by the push distance epsilon. This
change will occur in either the x or the y direction depending
on the push point. The transition function returns the new state
of the box and is a function of the current location of the box,
the push point, and epsilon. The transition is deterministic

E. Collision Checking

Prior to collision checking, forward kinematic functions
generate the forward kinematic for the robot and the box (both
box and big box). These forward kinematic results will be
used in collision checking. There are three different types of
collision checking functions required for the algorithm.



(a)
(b)

Fig. 3: Different situations in collision checking between circle
and polygons

The first collision checking is of the polygon-polygon type.
This type includes box-environment and big-box-environment
collision checking functions. In these functions, collision
checking performed between the box and each obstacle can
be parsed into two minor parts. The first part is to check
whether the vertices of the box are inside the obstacle (convex
polygon). The other part is to check if an intersection exists
between obstacle and box line segments. A collision-free node
can only be extended when neither of these parts get classified
as in collision.
The second collision checking type is for circle-polygon
collision, which includes robot-box and robot-environment
collision checking functions. For both of these functions,
the first step is to determine if the robot center is inside
its colliding counterpart. The robot is not represented as a
discrete set of points and therefore the previously used line
segment intersection collision check cannot be used. Instead,
the closest distance between the circle center and each obstacle
is checked to see if it is less than the radius of the robot. This
collision check can have two possible configurations. Fig.3
shows these two possible configurations. Part (a) shows the
robot in collision as described above; the distance between
the robot center and the line is less than the radius.
Part b shows an instance where the robot will be not be

in collision even when the distance from the continuous line
is less than the radius. To account for this configuration, the
location of the intersection between the line in question and the
line perpendicular which runs through the robot center should
be examined. Only if this location is between the vertices of
the obstacle line, will the robot be considered in collision.

IV. SIMULATION STUDIES AND RESULTS

To check the performance of the proposed algorithm, dif-
ferent environments were developed with different numbers
of obstacles and different configurations of obstacles. In these
environments, the robot tries to reach the box from a robot
start point and push the box to the boxs goal position.

Each environment has distinct initialization locations and goal
locations. A graph of the environment, visited nodes, and the
resulted plan and run time for each study are provided as
the reported results. Additional results in video form can be
viewed at: https://goo.gl/iFGsvm

A. Environment 1

Environment 1 is the same environment used in HW2, which
includes four polygons as obstacles, as is shown in Fig.4(a). In
this figure, robot start position, box start position, and box goal
position are represented by the yellow circle, red rectangle, and
green rectangle, respectively.
Fig.4(b) shows the result of running the algorithm on environ-
ment 1. Yellow circles are the plan for robot, green rectangles
are the plan for box, and red rectangles are visited nodes that
were not included in the final path.
It can be seen in the figures that the robot successfully reaches
the first planned push point of the box using the RRT-connect
algorithm and it moves the box to its goal position. Result for
different start and goal positions are available as video clips.

B. Environment 2

Environment 2 is a maze-shaped environment with three big
rectangular obstacles. Similar simulation study has been done
for environment 2 and results shows that the algorithm returns
a path that can achieve the goal with good performance. Part
(c) and (d) of Fig.4 represent environment 2 and the resulting
plan, respectively.

C. Environment 3

Environment 3 is also a maze-shaped environment with
diagonal-edge polygons. This environment represents a good
challenge for the planning algorithm. As seen in Fig.4(f), the
algorithm successfully pushes the box around obstacles while
minimizing the total cost.

D. Environment 4

Environment 4 is the most challenging environment for the
RRT planner as the box is always near obstacles, causing
the RRT planner to be used exclusively. It includes some
rectangular obstacles and a single triangular obstacle. The box
must be pushed in a specific order to navigate through the
passages capable of fitting the box. Only the robot can pass
through the narrow passages to access different push points.
As it is shown in Fig.4(h), the robot successfully determines
and executes the necessary push order.

V. ANALYSIS

As mentioned in the approach section, the proposed algo-
rithm is a combination of A* and RRT algorithms. Here, theo-
retical and practical analyses on performance of the algorithms
is provided.



(a) Environment 1

(b) Environment 2

(c) Environment 3

(d) Environment 4

Fig. 4: Simulation results on different environments. In left column, robot initial poses are yellow, box initial poses are red,
box goal poses are green. In right column, robot path are yellow, box bath are green and visited nodes for box are red.

A. Completeness

The A* portion of the algorithm is complete because it will
find a path to the goal if it exists and exit if it has visited all
possible states. In this application, the A* algorithm is reliant
upon the RRT of the robot to add states to its graph. RRT
is only probabilistically complete with an infinite number of
samples. Here, the samples are limited for efficiency reasons.
With RRT, the algorithm as a whole is not complete.

B. Optimality

With regards to the cost A* receives from the robot planner,
A* is optimal. This is because A* will expand with priority
to the next total lowest cost path. The heuristic portion of
the cost is an underestimate of the total cost and is therefore
admissible. The lower level RRT planner is not as optimal
with respect to path length. This in turn causes the algorithm
as a whole to be suboptimal.



TABLE I: Efficiency analysis

Case Study Avg. frontier size Avg. run time (sec)
Env 1 50.8 31.6
Env 2 62.3 31.2
Env 3 27.1 25.9
Env 4 8.3 160.2

C. Efficiency

To increase efficiency, the robot planner avoids using RRT-
connect to find paths as often as possible. This significantly
reduces the amount of time that is required to determine if
A* related actions are feasible. When obstacles are constantly
next to the box, the robot will use RRT-connect to get to other
locations on a regular basis, thus increasing the runtime.
The efficiency of the planner is only slightly affected when the
maximum number of samples for RRT-connect is increased.
This is because the majority of the time, the robot is only
moving from one side of the box to another and only needs a
few samples. Generally, the full number of samples are only
used when a path is not reachable.
Table (1) shows run times and frontier sizes for the different
environments. These results are achieved while running the
algorithm on a laptop with Core i7 CPU and 8GB of RAM.

VI. DISCUSSION

A. Lesson Learned

This project has provided an environment for two major
lessons to be learned. This first lesson came through combin-
ing two different algorithms as one. The combination requires
a deeper consideration of the finer points of each algorithm.
The second lesson came during modification of collision
checking to handle a circular object. Initially, only the distance
from the circle center to the line was considered. It was later
discovered that because the equation for the line was contin-
uous, a collision could be detected, even if the robot were far
from the obstacle. Not taking the time to fully understand this
collision check caused many hours of debugging.

B. Future Work

There are several areas in which the project can be ex-
panded. The addition of more push points and pushes not
directed through the boxs center of mass, would allow the box
to change orientation. This change in orientation would allow
the planner to be able to create plans for more complicated
environments. Allowing the robot to pull the box, in addition
to pushing, would increase the planners options for achieving
the goal.
It might also be better to replace A* with a stochastic policy.
The robot is commonly navigating in the same environment.
Having a policy would decrease the time needed for replan-
ning.
Finally, the transition function was assumed to be determinis-
tic. This assumption is not true. A stochastic analysis should
be performed and modifications made for either a policy or
replanning.

REFERENCES

[1] Tinetti, Mary E., et al. ”Risk factors for serious injury during falls by older
persons in the community.” Journal of the American geriatrics society
43.11 (1995): 1214-1221.

[2] Agostini, Joseph V., and Mary E. Tinetti. ”Drugs and falls: rethinking
the approach to medication risk in older adults.” Journal of the American
Geriatrics Society 50.10 (2002): 1744-1745.

[3] Hitcho, Eileen B., et al. ”Characteristics and circumstances of falls in a
hospital setting.” Journal of general internal medicine 19.7 (2004): 732-
739.

[4] Healey, Frances, et al. ”The effect of bedrails on falls and injury: a
systematic review of clinical studies.” Age and ageing 37.4 (2008): 368-
378.

[5] Grondin, Simon L., and Qingguo Li. ”Intelligent control of a smart walker
and its performance evaluation.” Rehabilitation Robotics (ICORR), 2013
IEEE International Conference on. IEEE, 2013.

[6] Lynch, Kevin M., and Matthew T. Mason. ”Stable pushing: Mechanics,
controllability, and planning.” The International Journal of Robotics
Research 15.6 (1996): 533-556.

[7] Salganicoff, Marcos, et al. A vision-based learning method for pushing
manipulation. University of Pennsylvania, 1993.

[8] Katz, Dov, and Oliver Brock. ”Manipulating articulated objects with
interactive perception.” Robotics and Automation, 2008. ICRA 2008.
IEEE International Conference on. IEEE, 2008.

[9] Ruiz-Ugalde, Federico, Gordon Cheng, and Michael Beetz. ”Fast adap-
tation for effect-aware pushing.” Humanoid Robots (Humanoids), 2011
11th IEEE-RAS International Conference on. IEEE, 2011.

[10] Kopicki, Marek, et al. ”Learning to predict how rigid objects behave
under simple manipulation.” Robotics and Automation (ICRA), 2011
IEEE International Conference on. IEEE, 2011.

[11] Hermans, Tucker, et al. ”Learning contact locations for pushing and ori-
enting unknown objects.” 2013 13th IEEE-RAS International Conference
on Humanoid Robots (Humanoids). IEEE, 2013.

[12] Li, Qingguo, and Shahram Payandeh. ”Manipulation of convex objects
via two-agent point-contact push.” The international journal of robotics
research 26.4 (2007): 377-403.


